Variational Neural Machine Translation
نویسندگان
چکیده
Models of neural machine translation are often from a discriminative family of encoder-decoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoder-decoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences alone, the variational model introduces a continuous latent variable to explicitly model underlying semantics of source sentences and to guide the generation of target translations. In order to perform an efficient posterior inference, we build a neural posterior approximator that is conditioned only on the source side. Additionally, we employ a reparameterization technique to estimate the variational lower bound so as to enable standard stochastic gradient optimization and large-scale training for the variational model. Experiments on NIST Chinese-English translation tasks show that the proposed variational neural machine translation achieves significant improvements over both stateof-the-art statistical and neural machine translation baselines.
منابع مشابه
Variational Recurrent Neural Machine Translation
Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, th...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملRecurrent Neural Network-Based Semantic Variational Autoencoder for Sequence-to-Sequence Learning
Sequence-to-sequence (Seq2seq) models have played an import role in the recent success of various natural language processing methods, such as machine translation, text summarization, and speech recognition. However, current Seq2seq models have trouble preserving global latent information from a long sequence of words. Variational autoencoder (VAE) alleviates this problem by learning a continuo...
متن کاملImproving the IBM Alignment Models Using Variational Bayes
Bayesian approaches have been shown to reduce the amount of overfitting that occurs when running the EM algorithm, by placing prior probabilities on the model parameters. We apply one such Bayesian technique, variational Bayes, to the IBM models of word alignment for statistical machine translation. We show that using variational Bayes improves the performance of the widely used GIZA++ software...
متن کاملImproving the Performance of GIZA++ Using Variational Bayes
Bayesian approaches have been shown to reduce the amount of overfitting that occurs when running the EM algorithm, by placing prior probabilities on the model parameters. We apply one such Bayesian technique, variational Bayes, to GIZA++, a widely-used piece of software that computes word alignments for statistical machine translation. We show that using variational Bayes improves the performan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016